پیش بینی بارش ماهانه با مدل ترکیبی شبکه عصبی مصنوعی – موجک و مقایسه با مدل شبکه عصبی مصنوعی
مهندسی آبیاری و آب ایران - Journal of Irrigation and Water Engineering
1395/2016
چکیده
بدون شک اولین قدم در مدیریت رودخانه پیش بینی بارش سطح حوضه آبریز می باشد. با این حال، با توجه به بالا بودن خاصیت تصادفی فرآیندها، بسیاری از مدل ها هنوز هم به منظور تعریف چنین پدیده پیچیده ای در زمینه مهندسی هیدرولوژیک توسعه داده می شوند. اخیرا شبکه های عصبی مصنوعی به عنوان یک برونیابی و درون یابی غیرخطی گسترده توسط هیدرولوژیست ها مورد استفاده قرار می گیرد. در پژوهش حاضر، تجزیه و تحلیل موجک به صورت ترکیب با شبکه عصبی مصنوعی و مقایسه با شبکه عصبی مصنوعی برای پیش بینی بارش ایستگاه وراینه در شهرستان نهاوند انجام شد. برای این منظور، سری زمانی اصلی با استفاده از تئوری موجک به چندین زیرسیگنال زمانی تجزیه شد، پس از آن این زیرسیگنال ها به عنوان داده های ورودی به شبکه عصبی مصنوعی برای پیش بینی بارش ماهانه استفاده شد. نتایج به دست آمده نشان داد که با توجه به ضریب همبستگی 0.92 و میانگین مربعات خطای 0.002 مدل ترکیبی شبکه عصبی مصنوعی-موجک، عملکرد این مدل نسبت به مدل شبکه عصبی مصنوعی با ضریب همبستگی 0.75 و میانگین مربعات خطای 0.003 بهتر می باشد و میتواند برای پیشبینی بارش کوتاه مدت و بلند مدت استفاده شود.

