ارزیابی کارایی انواع تبدیل موجک در مدلسازی ترکیبی موجک- شبکه عصبی مصنوعی برای پیش بینی جریان ماهانه رودخانه (مطالعه موردی: رودخانه کارده)
آب و خاک - Journal of Water and Soil
1403/2024
چکیده
رواناب پدیدهای مهم در چرخه هیدرولوژیکی است، از این رو پیش بینی میزان رواناب رودخانه برای اهدافی نظیر برنامه ریزی فعالیت های کشاورزی، پیش بینی سیلاب و تأمین آب مصرفی حائز اهمیت است. پیچیده بودن مدلهای فیزیکی یکی از دلایلی است که باعث شده پژوهشگران به مدلهای داده مبناء و مبتنی بر هوش مصنوعی روی آورند. وجود تغییرات آماری در داده ها سبب می شود که مدل سازی جریان رودخانه با مدل های داده مبناء با مشکلاتی در فرآیند یادگیری مدل همراه باشد. لذا لازم است با مدل سازی تلفیقی، دقت پیش بینی جریان ارتقاء یابد. هدف تحقیق حاضر، ارزیابی کارایی انواع موجک های گسسته و پیوسته در مدل ترکیبی موجک-شبکه عصبی (WANN) برای پیش بینی جریان ماهانه رودخانه کارده در ایستگاه ورودی به سد کارده است. بدین منظور، دو موجک گسسته Haar و Fejer-Korovkin2 و دو موجک پیوسته Symlet3 و Daubechies2 در ترکیب با مدل ANN مورد ارزیابی قرار گرفت. بررسی داده های هواشناسی و هیدرومتری در یک دوره 30 ساله (1370-1399) نشان داد که جریان ماهانه در دو گام زمانی T-1 و T-2 بهترین متغیرهای پیش بینی کننده (در سطح اطمینان 95%) بودند. آنالیزهای ترکیبی در سه سطح تجزیه انجام و کارایی مدل ها با روش صحت سنجی متقاطع در4 سطح مورد ارزیابی قرار گرفت. نتایج نشان داد که مدل های ترکیبی دارای دقت بالاتری نسبت به مدل ANN بودند و مدل ترکیبی پیشنهادی Symlet3-ANN در سطح 3، نتایج بهتری نسبت به سایر مدلها ارائه داد، بطوری که شاخص های R، RMSE و NSE در بخش واسنجی به ترتیب 90/0، 25/0 و 81/0 و در بخش صحت سنجی به ترتیب 85/0، 30/0 و 62/0 بود. همچنین ملاحظه شد دقت نتایج در سطح دو و سه تفاوت معناداری ندارند و بهتر است جهت کاهش مؤلفههای ورودی به مدل ANN و کاهش زمان اجرای مدل، تجزیه در سطح دو انجام شود.

