بکارگیری مدل های ترکیبی میانگین متحرک خودرگرسیون انباشته فازی احتمالی به منظور پیش بینی نرخ ارز
میانگین متحرک خودرگرسیون انباشته فازی (FARIMA)، شبکه های عصبی مصنوعی (ANNs)، طبقه بندی کننده های احتمالی (PNNs)، نرخ ارز
روش های عددی در مهندسی (استقلال) - JOURNAL OF COMPUTATIONAL METHODS IN ENGINEERING (ESTEGHLAL)
1391/2012
چکیده
مدل های میانگین متحرک خودرگرسیون انباشته فازی (FARIMA) از جمله مدل های بهبودیافته مدل های میانگین متحرک خودرگرسیون انباشته کلاسیک (ARIMA) اند که به منظور مرتفع ساختن محدودیت تعداد داده های مورد نیاز این گونه از مدل ها ارائه شده اند. در این مقاله، به منظور حصول نتایج دقیق تر در شرایط داده های قابل حصول کم، یک مدل ترکیبی از مدل های میانگین متحرک خودرگرسیون انباشته فازی با طبقه بندی کننده های احتمالی، ارائه شده است. نتایج حاصله از بکارگیری روش ترکیبی پیشنهادی در بازارهای ارز (پوند انگلستان، دلار امریکا و یورو همگی در مقابل ریال ایران) بیانگر کارآمدی روش پیشنهادی است، لذا مدل مذکور قابلیت بکارگیری بعنوان ابزار و جایگزینی مناسب برای پیش بینی نرخ ارز، بویژه مواقعی که با داده های اندک سر و کار داریم، را دارد.

